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4.2 Area

Use sigma notation to write and evaluate a sum.
Understand the concept of area.
Approximate the area of a plane region.
Find the area of a plane region using limits.

Sigma Notation
In the preceding section, you studied antidifferentiation. In this section, you will look
further into a problem introduced in Section 1.1—that of finding the area of a region in
the plane. At first glance, these two ideas may seem unrelated, but you will discover in
Section 4.4 that they are closely related by an extremely important theorem called the
Fundamental Theorem of Calculus.

This section begins by introducing a concise notation for sums. This notation is
called sigma notation because it uses the uppercase Greek letter sigma, written as 

Examples of Sigma Notation

a.

b.

c.

d.

e.

f.

From parts (a) and (b), notice that the same sum can be represented in different ways
using sigma notation.

Although any variable can be used as the index of summation, and are often
used. Notice in Example 1 that the index of summation does not appear in the terms of
the expanded sum.
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Sigma Notation

The sum of terms is written as

where is the index of summation, is the ith term of the sum, and the 
upper and lower bounds of summation are and 1.n

aii
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a1, a2, a3, .  .  . , ann

REMARK The upper and lower bounds must be constant with respect to the index
of summation. However, the lower bound doesn’t have to be 1. Any integer less than or
equal to the upper bound is legitimate.

FOR FURTHER INFORMATION
For a geometric interpretation 
of summation formulas, see the 

article “Looking at and 

Geometrically” by Eric Hegblom
in Mathematics Teacher. To view
this article, go to MathArticles.com.
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The properties of summation shown below can be derived using the Associative
and Commutative Properties of Addition and the Distributive Property of Addition over
Multiplication. (In the first property, is a constant.)

1. 2.

The next theorem lists some useful formulas for sums of powers.

Evaluating a Sum

Evaluate for 100, 1000, and 10,000.

Solution

Factor the constant out of sum.

Write as two sums.

Apply Theorem 4.2.

Simplify.

Simplify.

Now you can evaluate the sum by substituting the appropriate values of as shown in
the table below.

In the table, note that the sum appears to approach a limit as increases. Although
the discussion of limits at infinity in Section 3.5 applies to a variable where can be
any real number, many of the same results hold true for limits involving the variable 
where is restricted to positive integer values. So, to find the limit of as 
approaches infinity, you can write
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THEOREM 4.2 Summation Formulas

1. is a constant 2.

3. 4.

A proof of this theorem is given in Appendix A.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.
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THE SUM OF THE FIRST 
100 INTEGERS

A teacher of Carl Friedrich Gauss
(1777–1855) asked him to add all
the integers from 1 to 100.When
Gauss returned with the correct
answer after only a few moments,
the teacher could only look at
him in astounded silence.This is
what Gauss did:

This is generalized by Theorem 4.2,
Property 2, where
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Area
In Euclidean geometry, the simplest type of plane region is a rectangle. Although 
people often say that the formula for the area of a rectangle is

it is actually more proper to say that this is the definition
of the area of a rectangle.

From this definition, you can develop formulas for 
the areas of many other plane regions. For example, to 
determine the area of a triangle, you can form a rectangle 
whose area is twice that of the triangle, as shown in 
Figure 4.5. Once you know how to find the area of a 
triangle, you can determine the area of any polygon by 
subdividing the polygon into triangular regions, as 
shown in Figure 4.6.

Parallelogram Hexagon Polygon
Figure 4.6

Finding the areas of regions other than polygons is more difficult. The ancient
Greeks were able to determine formulas for the areas of some general regions
(principally those bounded by conics) by the exhaustion method. The clearest
description of this method was given by Archimedes. Essentially, the method is a
limiting process in which the area is squeezed between two polygons—one inscribed in
the region and one circumscribed about the region.

For instance, in Figure 4.7, the area of a circular region is approximated by an 
-sided inscribed polygon and an -sided circumscribed polygon. For each value of 

the area of the inscribed polygon is less than the area of the circle, and the area of the
circumscribed polygon is greater than the area of the circle. Moreover, as increases,
the areas of both polygons become better and better approximations of the area of 
the circle.

The exhaustion method for finding the area of a circular region
Figure 4.7

A process that is similar to that used by Archimedes to determine the area of a
plane region is used in the remaining examples in this section.

n = 12n = 6

n

n,nn

A � bh
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b
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Triangle:
Figure 4.5

A �
1
2bh

FOR FURTHER INFORMATION
For an alternative development of
the formula for the area of a circle,
see the article “Proof Without
Words: Area of a Disk is ” by
Russell Jay Hendel in Mathematics
Magazine. To view this article, go
to MathArticles.com.

�R2

ARCHIMEDES (287–212 B.C.)

Archimedes used the method of
exhaustion to derive formulas for
the areas of ellipses, parabolic 
segments, and sectors of a spiral.
He is considered to have been 
the greatest applied mathematician
of antiquity.
See LarsonCalculus.com to read
more of this biography.

Mary Evans Picture Library
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The Area of a Plane Region
Recall from Section 1.1 that the origins of calculus are connected to two classic
problems: the tangent line problem and the area problem. Example 3 begins the
investigation of the area problem.

Approximating the Area of a Plane Region

Use the five rectangles in Figure 4.8(a) and (b) to find two approximations of the area
of the region lying between the graph of

and the -axis between and 

Solution

a. The right endpoints of the five intervals are

Right endpoints

where The width of each rectangle is and the height of each 
rectangle can be obtained by evaluating at the right endpoint of each interval.

Evaluate f at the right endpoints of these intervals.

The sum of the areas of the five rectangles is

Height Width

Because each of the five rectangles lies inside the parabolic region, you can 
conclude that the area of the parabolic region is greater than 6.48.

b. The left endpoints of the five intervals are

Left endpoints

where The width of each rectangle is and the height of each 
rectangle can be obtained by evaluating at the left endpoint of each interval. So, the
sum is

Height Width

Because the parabolic region lies within the union of the five rectangular regions,
you can conclude that the area of the parabolic region is less than 8.08.

By combining the results in parts (a) and (b), you can conclude that

By increasing the number of rectangles used in Example 3, you can obtain closer
and closer approximations of the area of the region. For instance, using 25 rectangles
of width each, you can conclude that

7.1712 < �Area of region� < 7.4912.
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(a) The area of the parabolic region is
greater than the area of the rectangles.

f(x) = −x2 + 5
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(b) The area of the parabolic region is less
than the area of the rectangles.

Figure 4.8
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Upper and Lower Sums
The procedure used in Example 3 can be generalized as follows. Consider a plane
region bounded above by the graph of a nonnegative, continuous function

as shown in Figure 4.9. The region is bounded below by the -axis, and the left and right
boundaries of the region are the vertical lines and 

To approximate the area of the region, begin by subdividing the interval into
subintervals, each of width

as shown in Figure 4.10. The endpoints of the intervals are

Because is continuous, the Extreme Value Theorem guarantees the existence of a 
minimum and a maximum value of in each subinterval.

Minimum value of in th subinterval

Maximum value of in th subinterval

Next, define an inscribed rectangle lying inside the th subregion and a circumscribed
rectangle extending outside the th subregion. The height of the th inscribed rectangle
is and the height of the th circumscribed rectangle is For each the area
of the inscribed rectangle is less than or equal to the area of the circumscribed 
rectangle.

The sum of the areas of the inscribed rectangles is called a lower sum, and the sum of
the areas of the circumscribed rectangles is called an upper sum.

Area of inscribed rectangles

Area of circumscribed rectangles

From Figure 4.11, you can see that the lower sum is less than or equal to the upper
sum Moreover, the actual area of the region lies between these two sums.

Area of inscribed rectangles Area of region Area of circumscribed
is less than area of region. rectangles is greater than

area of region.
Figure 4.11
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The region under a curve
Figure 4.9
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Finding Upper and Lower Sums for a Region

Find the upper and lower sums for the region bounded by the graph of and
the -axis between and 

Solution To begin, partition the interval into subintervals, each of width

Figure 4.12 shows the endpoints of the subintervals and several inscribed and
circumscribed rectangles. Because is increasing on the interval the minimum
value on each subinterval occurs at the left endpoint, and the maximum value occurs at
the right endpoint.
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Using the right endpoints, the upper sum is
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Figure 4.12
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Example 4 illustrates some important things about lower and upper sums. First,
notice that for any value of the lower sum is less than (or equal to) the upper sum.

Second, the difference between these two sums lessens as increases. In fact, when you
take the limits as both the lower sum and the upper sum approach 

Lower sum limit

and

Upper sum limit

The next theorem shows that the equivalence of the limits (as ) of the upper
and lower sums is not mere coincidence. It is true for all functions that are continuous
and nonnegative on the closed interval The proof of this theorem is best left to a
course in advanced calculus.

In Theorem 4.3, the same limit is attained for both the minimum value and
the maximum value So, it follows from the Squeeze Theorem (Theorem 1.8) that
the choice of in the th subinterval does not affect the limit. This means that you are
free to choose an arbitrary -value in the th subinterval, as shown in the definition of
the area of a region in the plane.
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THEOREM 4.3 Limits of the Lower and Upper Sums

Let be continuous and nonnegative on the interval The limits as 
of both the lower and upper sums exist and are equal to each other. 

That is,

where and and are the minimum and maximum 
values of on the subinterval.f
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Definition of the Area of a Region in the Plane 

Let be continuous and nonnegative on the 
interval (See Figure 4.13.) The area 
of the region bounded by the graph of 
the -axis, and the vertical lines and 
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Exploration

For the region given in
Example 4, evaluate the
lower sum

and the upper sum

for and 1000.
Use your results to determine
the area of the region.
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Finding Area by the Limit Definition

Find the area of the region bounded by the graph the -axis, and the vertical
lines and as shown in Figure 4.14.

Solution Begin by noting that is continuous and nonnegative on the interval 
Next, partition the interval into subintervals, each of width 
According to the definition of area, you can choose any -value in the th subinterval.
For this example, the right endpoints are convenient.

Right endpoints:

The area of the region is 

Finding Area by the Limit Definition

See LarsonCalculus.com for an interactive version of this type of example.

Find the area of the region bounded by the graph of the -axis, and the
vertical lines and as shown in Figure 4.15.

Solution Note that the function is continuous and nonnegative on the interval
So, begin by partitioning the interval into subintervals, each of width

Choosing the right endpoint

Right endpoints

of each subinterval, you obtain

The area of the region is 53.
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The next example looks at a region that is bounded by the -axis (rather than by the
-axis).

A Region Bounded by the -axis

Find the area of the region bounded by the graph of and the -axis for
as shown in Figure 4.16.

Solution When is a continuous, nonnegative function of you can still use the
same basic procedure shown in Examples 5 and 6. Begin by partitioning the interval

into subintervals, each of width Then, using the upper endpoints
you obtain

Upper endpoints:

The area of the region is 

In Examples 5, 6, and 7, is chosen to be a value that is convenient for calculating
the limit. Because each limit gives the exact area for any there is no need to find 
values that give good approximations when is small. For an approximation, however,
you should try to find a value of that gives a good approximation of the area of the 
th subregion. In general, a good value to choose is the midpoint of the interval,

and apply the Midpoint Rule.

Midpoint Rule

Approximating Area with the Midpoint Rule

Use the Midpoint Rule with to approximate the area of the region bounded by
the graph of and the -axis for as shown in Figure 4.17.

Solution For The midpoints of the subregions are shown below.

So, the area is approximated by

which is about 2.052.

Area � �
n

i�1
 f�ci� �x � �
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�sin ci���

4� �
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8
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8
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2
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�
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2
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8
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�
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8

�x � ��4.n � 4,

0 	 x 	 �,x f�x� � sin x
n � 4
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f �xi � xi�1

2 � �x.

ci � �xi � xi�1��2,
i
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n
ci,
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1
3.

 �
1
3

.

 � lim
n→�

 �1
3

�
1

2n
�

1
6n2�

 � lim
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1
n3	n�n � 1��2n � 1�

6 


 � lim
n→�

 
1
n3 �

n

i�1
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ci �
i
n

 � lim
n→�

 �
n

i�1
� i

n�
2

�1
n�

 Area � lim
n→�

 �
n

i�1
f�ci� �y

ci � i�n,
�y � 1�n.n�0, 1�

y,f

0 	 y 	 1,
yf� y� � y2

y

x
y
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1

1

x

(1, 1)

(0, 0)

y

f(y) = y2

The area of the region bounded by the
graph of and the -axis for 
is 
Figure 4.16

1
3.

0 	 y 	 1yf

REMARK You will learn
about other approximation
methods in Section 4.6. One 
of the methods, the Trapezoidal
Rule, is similar to the Midpoint
Rule.

c1 c2 c3 c4

f(x) = sin x

x

y

π
4

1

π3
4
π

2
π

The area of the region bounded by the
graph of and the -axis for

is about 2.052.
Figure 4.17
0 	 x 	 �

xf �x� � sin x
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4.2 Area 263

Finding a Sum In Exercises 1–6, find the sum. Use the 
summation capabilities of a graphing utility to verify your
result.

1. 2.

3. 4.

5. 6.

Using Sigma Notation In Exercises 7–12, use sigma 
notation to write the sum.

7.

8.

9.

10.

11.

12.

Evaluating a Sum In Exercises 13–20, use the properties
of summation and Theorem 4.2 to evaluate the sum. Use the 
summation capabilities of a graphing utility to verify your
result.

13. 14.

15. 16.

17. 18.

19. 20.

Evaluating a Sum In Exercises 21–24, use the summation
formulas to rewrite the expression without the summation
notation. Use the result to find the sums for 100, 1000,
and 10,000.

21. 22.

23. 24.

Approximating the Area of a Plane Region In
Exercises 25–30, use left and right endpoints and the given
number of rectangles to find two approximations of the area of
the region between the graph of the function and the -axis
over the given interval.

25. 4 rectangles

26. 6 rectangles

27. 6 rectangles

28. 8 rectangles

29. 4 rectangles

30. 6 rectangles

Using Upper and Lower Sums In Exercises 31 and 32,
bound the area of the shaded region by approximating the
upper and lower sums. Use rectangles of width 1.

31. 32.

Finding Upper and Lower Sums for a Region In
Exercises 33–36, use upper and lower sums to approximate the
area of the region using the given number of subintervals (of
equal width).

33. 34.

35. 36.

x

1

1

y

x
1 2

1

y

y � �1 � x2y �
1
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1 2

1

2
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1 2 3 4 5
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2

3

4

5
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1 2 3 4 5
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4

5
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2
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�1, 3�,g�x� � x2 � 1,

�2, 5�,g�x� � 2x2 � x � 1,

�2, 4�,f �x� � 9 � x,

�0, 2�,f �x� � 2x � 5,

x

�
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4.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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264 Chapter 4 Integration

Finding a Limit In Exercises 37–42, find a formula for the
sum of terms. Use the formula to find the limit as 

37. 38.

39. 40.

41. 42.

43. Numerical Reasoning Consider a triangle of area 2
bounded by the graphs of and 

(a) Sketch the region.

(b) Divide the interval into subintervals of equal width
and show that the endpoints are

(c) Show that 

(d) Show that 

(e) Complete the table.

(f ) Show that 

44. Numerical Reasoning Consider a trapezoid of area 4
bounded by the graphs of and 

(a) Sketch the region.

(b) Divide the interval into subintervals of equal width
and show that the endpoints are

(c) Show that 

(d) Show that 

(e) Complete the table.

(f ) Show that 

Finding Area by the Limit Definition In Exercises
45–54, use the limit process to find the area of the region
bounded by the graph of the function and the -axis over the
given interval. Sketch the region.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

Finding Area by the Limit Definition In Exercises
55–60, use the limit process to find the area of the region
bounded by the graph of the function and the -axis over the
given -interval. Sketch the region.

55.

56.

57.

58.

59.

60.

Approximating Area with the Midpoint Rule In
Exercises 61–64, use the Midpoint Rule with to 
approximate the area of the region bounded by the graph of the
function and the -axis over the given interval.

61.

62.

63.

64. 	0, 
�

2
f �x� � cos x,

	0, 
�

4
f �x� � tan x,
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WRITING ABOUT CONCEPTS
Approximation In Exercises 65 and 66, determine
which value best approximates the area of the region
between the -axis and the graph of the function over the
given interval. (Make your selection on the basis of a sketch
of the region, not by performing calculations.)

65.

(a) (b) 6 (c) 10 (d) 3 (e) 8

66.

(a) 3 (b) 1 (c) (d) 8 (e) 6

67. Upper and Lower Sums In your own words and
using appropriate figures, describe the methods of upper
sums and lower sums in approximating the area of a region.

68. Area of a Region in the Plane Give the definition
of the area of a region in the plane.

�2

�0, 4� f �x� � sin 
�x
4

,

�2

�0, 2� f �x� � 4 � x2,

x
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4.2 Area 265

69. Graphical Reasoning Consider the region bounded by
the graphs of and as
shown in the figure. To print an enlarged copy of the graph, go
to MathGraphs.com.

(a) Redraw the figure, and 
complete and shade the 
rectangles representing the 
lower sum when 
Find this lower sum.

(b) Redraw the figure, and 
complete and shade the 
rectangles representing the 
upper sum when 
Find this upper sum.

(c) Redraw the figure, and complete and shade the rectangles
whose heights are determined by the functional values at
the midpoint of each subinterval when Find this
sum using the Midpoint Rule.

(d) Verify the following formulas for approximating the area
of the region using subintervals of equal width.

Lower sum:

Upper sum:

Midpoint Rule:

(e) Use a graphing utility to create a table of values of 
and for and 200.

(f) Explain why increases and decreases for 
increasing values of as shown in the table in part (e).

True or False? In Exercises 71 and 72, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

71. The sum of the first positive integers is 

72. If is continuous and nonnegative on then the limits as
of its lower sum and upper sum both exist and

are equal.

73. Writing Use the figure to write a short paragraph explaining
why the formula is valid for
all positive integers 

Figure for 73 Figure for 74

74. Graphical Reasoning Consider an -sided regular 
polygon inscribed in a circle of radius Join the vertices of the
polygon to the center of the circle, forming congruent 
triangles (see figure).

(a) Determine the central angle in terms of 

(b) Show that the area of each triangle is 

(c) Let be the sum of the areas of the triangles. Find

75. Building Blocks A child places cubic building blocks in
a row to form the base of a triangular design (see figure). Each
successive row contains two fewer blocks than the preceding
row. Find a formula for the number of blocks used in the
design. (Hint: The number of building blocks in the design
depends on whether is odd or even.)

76. Proof Prove each formula by mathematical induction. (You
may need to review the method of proof by induction from a
precalculus text.)
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i 3 �
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n � 4, 8, 20, 100,M�n�S�n�,
s�n�,
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i�1
f 	�i �

1
2�

4
n
 �

4
n�

S�n� � �
n

i�1
f 	�i� 4

n
 �
4
n�

s�n� � �
n

i�1
f 	�i � 1� 4

n
�
4
n�

n

n � 4.

n � 4.

n � 4.

x
1

2

2 3

4

4

6

8

y

f

y � 0,x � 4,x � 0,f �x� � 8x��x � 1),

70. HOW DO YOU SEE IT? The function shown
in the graph below is increasing on the interval

The interval will be divided into 
12 subintervals.

(a) What are the left endpoints of the first and last
subintervals?

(b) What are the right endpoints of the first two 
subintervals?

(c) When using the right endpoints, do the rectangles 
lie above or below the graph of the function?

(d) What can you conclude about the heights of the 
rectangles when the function is constant on the
given interval?

1 2 3 4 5

2

3

4

5

x

y

�1, 4�.

PUTNAM EXAM CHALLENGE
77. A dart, thrown at random, hits a square target. Assuming

that any two parts of the target of equal area are equally
likely to be hit, find the probability that the point hit is
nearer to the center than to any edge. Write your answer in
the form where and are integers.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

dc,b,a,�a�b � c��d,
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